

Code Check[®] for the 2023 NEC[®]

An Illustrated Reference for Electrical Codes Designed for use with Adobe Acrobat or Acrobat Reader

BY DOUGLAS HANSEN, REDWOOD KARDON, SKIP WALKER & GLENN MATHEWSON

Based on the 2023 National Electrical Code[®] and 2024 International Residential Code[®] including annotated changes from the previous code editions

> Illustrations by Paddy Morrissey & Douglas Hansen Copyright©2025 by the authors \$39.99 ISBN 979⁄8-9873271-8-0

Organization of this

tables accompany the t small book, we use mar

Instructions: The navi ones that are the defaul will want the buttons to THE BUTTONS AT THE TOP OF EACH PAGE ARE LINKS THAT TAKE YOU TO THE DESCRIBED DESTINATIONS (LINKS NOT ACTIVE IN THESE SAMPLE SCREEN SHOTS) a particular code rule. Figures and ount of information into a relatively

d. Other pdf viewers, such as the in the Adobe "view" menu, as you

Setting Up Adobe Acrobat Reader

Using the eBook Navigation Features

Saving notes and comments in your personalized version

• The easiest way to find a particular topic is to start at the table of contents. Every line in each table of contents is a link to the section it describes.

- Figures and tables are referenced in the text by the letters **F** and **T** followed by the figure or table number.
- Within the text of this book, every figure reference, page reference, and table reference is also a link. When the text references a figure or table on a different page, clicking on the reference number takes you to that reference, and clicking on the red "Return to Previous Page" button at the top of the screen takes you back to where you had been in the text.

For updates and information related to this book, visit codecheck.com

Thanks and appreciation to Ryan Jackson.

CodeCheck is a registered trademark of Harry N Abrams, the Art of Books.

NEC and National Electrical Code are trademarks of the National Fire Protection Association. IRC and International Residential Code are Trademarks of the International Code Council.

Licensed exclusively to

Copyright © 2025 by Douglas Hansen, Redwood Kardon & Skip Walker, and Glenn Mathewson – Unauthorized reproduction or redistribution prohibited ICC

INTERNATIONAL CODE COUNCIL®

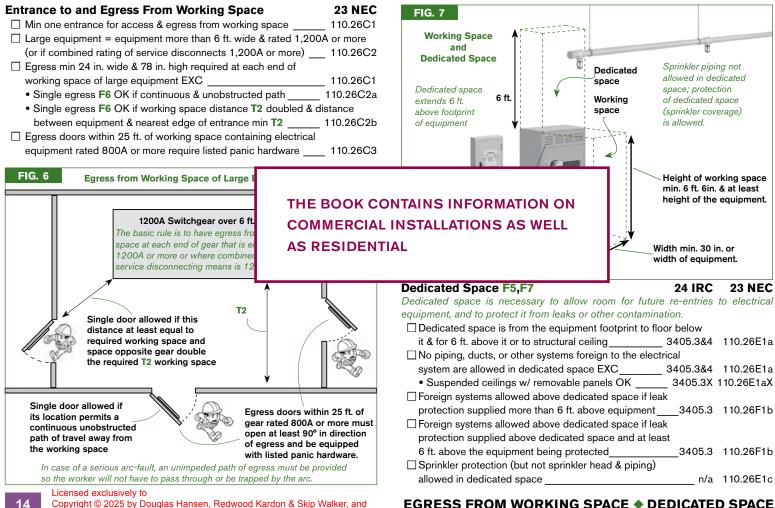
TABLE OF CONTENTS (Page 1 of 2)

		TABLE OF CONTENTS (Fage	1 01 2)		
INTRODUCTION & EXAMPLES	2	GROUNDING ELECTRODES	19	CONDUCTORS	31
	3	Systems to be Grounded	19	Identification & Marking	31
ABBREVIATIONS	Ŭ	Systems to be Grounded Grounding Electrode System (GES)	19	Buildings with More than One Nominal Voltage	
				Aluminum	3
GENERAL RULES				onductors	32
Permits & Inspections, Scop		THE TABLE OF CONTENTS IS A		Circuit Sizes	32
Lioting a Laboring of Lquiph				AL CONNECTIONS	
TEMPORARY POWER	FOR EXAMPLE	, FROM WHEREVER YOU ARE IN	I THE	RENT PROTECTION	34
OVERHEAD SERVICE DR	BOOK IE VOU	DECIDE TO LOOK AT "MULTIWI		NCH nt Device Sizes Terminations and Temperature Ratings	34
				r Terminations and Temperature Ratings_	34
Clearances from Openings	CIRCUITS" YO	U WOULD CLICK THE TABLE OF	CONTE	NTS ductors	35
Clearance for Communication				Correction (Derating) & Examples	_35-36
	BUITON, GOT	TO "PANELBOARDS & CABINET	S" AND	uctors	37
Service Risers	THEN TO THE	LINE FOR MULTIWIRE BRANCH	CIRCU	ITS. op	38
Service Entrance Conducto	_			ault Protection of Equipment	
	CLICKING ON	IT WILL TAKE YOU TO THAT PAG	E. TO		39
Service Equipment		HERE YOU HAD BEEN, CLICK T		quired	
					39
Service Disconnecting Mean	'RETURN TO P	REVIOUS PAGE" BUTTON.		Supported Boxes & Enclosures	39
Emergency Disconnects				porting Ceiling-Suspended Fans	40
Surge Protection				porting Luminaires	40
ELECTRICAL EQUIPMEN	12	Objectionable Currents	24	Walls & Ceilings	40
Mounting & Cooling of Equipment	12	Types of EGCs, Identification & Size	24	EGC's in Boxes Pull & Junction Boxes w/ Conductors ≥#4	41
Seismic Anchoring & Restraint	12	EGCs in Boxes & EGCs to Receptacles	25	Pull & Junction Boxes w/ Conductors ≥#4	41
Reconditioned Equipment	12	Use of Grounded Conductor for Equipment Ground	ding _25	Power Distribution Blocks in Boxes & Wireways	41
EQUIPMENT SPACES & CLEARA	NCES 13	Isolated Ground Receptacles		Cables and Conductors in Boxes	41 42-43
Working Space	13	PANELBOARDS & CABINETS	26	Box Volume and Fill Calculations	
Entrance to and Egress From Workin	g Space14	Enclosures (Cabinets), Dry, Damp & Wet Locations		RACEWAYS	44
Dedicated Space Equipment Servicing and Maintenanc	14	Location, Clearances, Physical & Electrical Protection		Benga	44
Equipment Servicing and Maintenance	;e15	Overcurrent Protection Devices (OCPDs)		BMC-Rigid Metal Conduit	45
Arc-Flash Hazard Warning	15	Panel Wining	97	EMT—Electrical Metallic Tubing	45
Arc Energy Reduction	15		28	FMC—Flexible Metal Conduit	46
INTERRUPTING & WITHSTAND R	ATINGS 16	Panel Covers	29	LFMC—Liquidtight Flexible Metal Condui	46
SEPARATE BUILDINGS	17	Circuit Directories	29	LFNC—Liquidtight Flexible Nonmetallic Conduit	46
Outside Feeders	17	Neutral Conductors & EGCs	29	PVC — Rigid Polyvinyl Chloride Conduit	47
Disconnecting Means	17	High-Leg Delta Systems	29	ENT — Electrical Nonmetallic Tubing	47
Grounding in Separate Buildings	17	Ungrounded Systems	29	Conduit Bodies, Fittings & Bushings Conductors in Raceways	
		Electrical Equipment Rooms	29	Conductors in Raceways	
UNDERGROUND WIRING	18	Wiring Space Inside Cabinets	30	Conductors Fill in Raceways	48 49-52

TABLE OF CONTENTS (1 of 2)

Licensed exclusively to

Copyright © 2025 by Douglas Hansen, Redwood Kardon & Skip Walker, and Glenn Mathewson – Unauthorized reproduction or redistribution prohibited


3

	APPDEVIATIONS (According)	
	ABBREVIATIONS (Acronyms)	- /- ast and lable
<pre>= less than</pre>	FLC = full load current	n/a = not applicable NEC = National Electrical Code
 less than or equal to areater than 	FMC = flexible metal conduit	NEC = National Electrical Code NEMA [®] = National Electrical Manufacturers Association
= greater than	ft. = foot, feet	NFPA [®] = National Fire Protection Association
= greater than or equal to	GEC = grounding electrode conductor	NM = nonmetallic-sheathed cable
= Ohms (unit of electrical resistance)	GES = arounding electrode system	outlet branch circuit AFCI
D = Single Family Dwelling		current protection device
&2FD = 1 - & 2-Family Dwellings = amp(s), amperage, amps		(as in see p.29)
	Abbreviations are always accessible from	m the rical personal protective equipment
= alternating current	hutten at the ten of even upone. If an abl	
= type AC armored cable, a.k.a. "BX"	button at the top of every page. If an abl	polyvinyl chloride conduit
C = available fault current	is not familiar, you can look it up from he	ere and biovoltaic rapid shutdown equipment <i>p.101</i>
FCI = arc-fault circuit interrupter		i i i i i i i i i i i i i i i i i i i
FF = above finished floor or grade	then return to your place in the text with	nonmetallic conduit (PVC)
HJ = authority having jurisdiction	"RETURN TO PREVIOUS PAGE" button.	prced thermosettting resin conduit
C = ampere interrupting capacity (see IR)	REPORT TO TREVIOUS TAGE BUILDI.	m bonding jumper
= aluminum		circuit current rating
I = in accordance w/ manufacturer's instructi		- seismic design category
SCE = American Society of Civil Engineers	kcmil = 1,000 circular mil units (wire size)	SE = service entrance (cable)
WG = American Wire Gauge (#8 = 8 AWG)	KO = knockout	SPD = surge protective device
J = bonding jumper	kVA = kilovolt-amperes (1,000's of VAs)	sq. = square, as in sq. in.
CA = copper-clad aluminum	kW = kilowatts (1,000s of Watts)	SS = stainless steel
SA = cross sectional area	kWh = kilowatt hours	SSBJ = supply side bonding jumper
SST = corrugated stainless steel gas tubing	L&L = listed & labeled, listing & labeling	temp = temperature
I. = cubic, as in cu. in.	lb. = pound(s)	TR = tamper-resistant
I = copper	LED = light-emitting diode	UF = underground feeder cable
c = direct current	LFMC = liquidtight flexible metal conduit	UL [®] = UL Solutions (formerly Underwriters Laboratories)
N = dishwasher	LFNC = liquidtight flexible nonmetallic conduit	USE = type USE underground service entrance cable
g. = exemplia gratia – "for example"	\mathbf{mA} = milliamp (1,000th of an amp)	V = volt(s), such as a 120V circuit
GC = equipment grounding conductor	max = maximum	VA = volt-ampere(s), units of apparent power
IS = energy management system	MBJ = main bonding jumper	VD = voltage drop
AT = electrical metallic tubing	MC = metal-clad cable	VD = voltage drop VFD = variable frequency drive (adjustable speed drive)
IT = electrical nonmetallic tubing	MCC = motor control center	W = watt(s), units of true (useful) power
S = energy storage system	MCS = microgrid control system	w = watt(s), units of true (useful) power w/ = with
= electric vehicle	MFD = multifamily dwelling	w/ = with w/o = without
/SE = electric vehicle supply equipment	MFR = manufacturer(s)	WR = weather-resistant
XC = exception(s) (in following line)	MID = microgrid interconnect device	
e = ferrous	min = minimum	WSAF = weight-supporting attachment fitting
LA = full load amperage	MWBC = multiwire branch circuit	WSCR = weight-supporting ceiling receptacle
		XFMR = transformer

1

5

Licensed exclusively to Copyright © 2025 by Douglas Hansen, Redwood Kardon & Skip Walker, and Glenn Mathewson – Unauthorized reproduction or redistribution prohibited

Copyright © 2025 by Douglas Hansen, Redwood Kardon & Skip Walker, and Glenn Mathewson - Unauthorized reproduction or redistribution prohibited

UNDERGROUND WIR	ING		FIG. 12 Conduct	tors in T	rench		— Finish grad	le
The interior of an underground cond difference in elevation from one end be needed. Joint trenches may inclu from power conductors is typically p General	d to the other of the conduit, drain de communication cables; separat ber agreement of the parties (utilitie 24 IRC	n boxes may ion of these es). 23 NEC	(measure from top of cables or conduit to finish grade)	Rescher	0		4	CAUTION ribbon ove
Cover to finish grade per T3,F1 Measure cover from top of cable Backfill w/ smooth granular mate	or conduit T3,F12 T3803.1	300.5A T300.5A	Plywood to protect conduit from rocks (where necessary)				Smooth, gra	nular material
no rocks, cinders, or paving ma	The eBook contains 1		and 60 table	_	FOURE		IRC T3803.1	NEC 300.5
 Provide running boards if subject Direct-buried splices & taps O listed for the purpose 	The text lines contain	links to the	ese illustrations	5.	RMC or IMC	EMT ^A or PVC	GFCI max. 20A Circuit	Not more than 30V ^B
Underground Raceways	and tables. When the	-			6 in.	18 in.	12 in.	6 in.
□ Provide for earth movement (se	page, you can quickly)	6 in.	12 in.	6 in.	6 in.
"S" loops, flexible connections,	PREVIOUS PAGE" bu	tton at the t	op.		-			
Cables & raceways installed w	airectional boring require				0	0	0c	0 c
approval for the purpose (specia Interior of underground raceways Conductors underground must b		300.5K 300.5B 310.10C	min. 4 in. slab min. 6 in. past conductors and no vehicle traffic	18 in.	4 in.	4 in.	6 in. 4 in. raceway	6 in. 4 in. raceway
Seal underground raceway entri		300.5G	Streets, Driveways, Lots	24 in.	24 in.	24 in.	24 in.	24 in.
Sealants must be identified for u		300.5G	1&2FD Driveway	18 in.	18 in.	18 in.	12 in.	18 in.
☐ Spare or unused raceways to als ☐ Bushing required at end of cond ☐ Expansion fittings in risers if soil Parallel Raceways	uit ending underground _3803.7	300.5G 300.5H 300.5J	A. Direct-buried EMT requires p B. Applies to central irrigation o OK per installation instructio nonmetallic raceway w/ 6 in. C. Applies to raceways & MC o	protection f r landscap ons at lesse cover.	e lighting in U r depths. Liste	per 358.10 ² F cable or a r ed pool, spa,	3 aceway. Listed low- or fountain lighting s	voltage lighting 30V OK in
Parallel raceways must each con			Service Laterals				24 IR(23 NEC
 Isolated phase conductors in r 	EXC 3803.8X nonmetallic raceways n/a ay not be allowed by local AHJ or	300.5(I)X1 300.5(I)X2	☐ Size, depth, material ☐ Sewer not in joint tree ☐ Warning ribbon min 1	nch			vutilit utilit	y utility y utility
Maintain spacing between racev	vays n/a	310.15C2	or more below grade					
NEC Informative Annex B contains information on performance of Nehe	1 0	s, as well as	Seal underground rac 23. Directly buried EMT is new to	ceways ((see left co	olumn)	3601.5	

UNDERGROUND

Licensed exclusively to Copyright © 2025 by Douglas Hansen, Redwood Kardon & Skip Walker, and 18 Glenn Mathewson - Unauthorized reproduction or redistribution prohibited

EQUIPMENT GROUNDING CONDUCTORS (EGCs)

Equipment grounding provides a low-impedance path so the overcurrent device will open the circuit in a fault. The purpose of equipment grounding is completely different than that of earth grounding; earth plays no part in helping to clear

Purpose & Routing Effective ground-fault current path must be established GEC not to be used as an EGC EXC • Where complies w/ both & no objectionable current Metal building frame or structure not allowed as EGC	3908.5 n/a	23 25 250.1 250.1 250.1	chan	e changes are hig ge is further expl om of the page.	aineo	d ir
 EGCs must run w/ other conductors of circuit EXC Replacement of nongrounding receptacles (see <i>p.60</i> 	3908.10	250 250.1	.134 30C	☐ If ungrounded condu EGCs must be increa	ctors ir	ncre
Objectionable Currents						1 512
□ Arrange connections to avoid objectionable currents Continuous current on an EGC is an example of object			0.6A	TARIE 5	N. EQI EGC) S	
Temporary current from a ground fault or current from correquired by code are not considered objectionable current			.6C ²⁷	Max. Rating of OCPD (An	nps)	
Types of EGCs		\succ		15		
□ Wire EGCs can be Cu, AL, Cu-clad AL, solid or strand	ded,			20		
· · · · · · · · · · · · · · · · · · ·	908.9(1)		.118	25-60		
RMC, IMC, EMT, AC cable armor, electrically continuo						
& surface metal raceways allowed as EGC EX	-		.118	70-100		
 Wire-type EGC required in outdoor race ways w/ cor 				110-200		
fittings when supplying rooftop air conditioning		4	40.9	225-300		
Raceways & cable armor as EGC must approved fitting				400		
all joints, fittings & connections to be made tight3		250.1	20A	500		
FMC as EGC w/ listed fittings max 20A OCPD, max I FMC & LFMC in same fault-current path 6 ft., max trad				600		
$1\frac{1}{4}$ in., no vibration or flexibility after installation 3		250.11	8(5)	800		
\Box LFMC same as FMC & 6CA OCPD allowable		200.1	0(0)	1000		
in trade sizes ³ / ₄ -1 ¹ / ₄ EXC 3	908.9.2	250.11	8(6)	1200		
 If SS core, install wire EGC or a bonding jumper3 	908.9.2	250.1	8(6)			
27. An example of current on a required connection is to find amperage on a conductor, where current is commonly found because it is in parallel with	grounding e	lectrode		1600		
conductor where current is commonly found because it is in parallel with	the service i	neutral		2000		

Identification	24 NEC				
w/ green or o ₩4 and large	250.119A				
-	e highlighted in the te explained in the footr ge.		50.119B 50.119A 50.122A		
□ If ungrounded conductors increased in size for other than derating, EGCs must be increased in size proportionately					
TABLE 5MIN. EQUIPMENT GROUNDING CONDUCTOR (EGC) SIZE ♦ IRC T3908.13 ♦ NEC T250.122					

(EGC) SIZE ♥ IRC 13906.13 ♥ NEC 1250.122					
Max. Rating of OCPD (Amps)	Size of Cu EGC (AWG)	Size of AL EGC (AWG)			
15	14	12			
20	12	10			
25-60	10	8			
70-100	8	6			
110-200	6	4			
225-300	4	2			
400	3	1			
500	2	1/0			
600	1	2/0			
800	1/0	3/0			
1000	2/0	4/0			
1200	3/0	250 kcmil			
1600	4/0	350 kcmil			
2000	250 kcmil	400 kcmil			

EQUIPMENT GROUNDING

- Equipment. A general term including fittings, devices, appliances, luminaires, apparatus, machinery, and the lie used as part of or in connection with an electrical system.
- Equipment Bonding Jumper. The connection between two or more portions of the equipment grounding conductor.
- Equipment grounding conductor (EGC). A wire or conductive path that is part of an effective ground-fault current path and connects normally non-current-carrying metal parts of equipment together and to the system grounded conductor or to the grounding electrode conductor, or both. F22,23,24
- **Exothermic Welding.** Irreversible joining of metallic parts, such as a grounding electrode conductor and a ground rod, by means of tools designed to weld them together.
- Exposed (as applied to live parts). Capable of approached nearer than a safe distance by a period.
- Exposed (as applied to wiring methods). On a panels designed to allow access. Wiring above a ceiling tile is removed.
- Fault Current. The current delivered at a point on condition. See *p.16*.
- **Feeders.** All circuit conductors between the servic derived system, or other power supply source a device. The conductors between a service paner and suppaner are record
- Generating Capacity. The sum of parallel-connected inverter maximum continuous output power at 40°C expressed in kW or VA.

Ground. The earth.

- Grounded. Connected to ground or to a conductive body that extends the ground connection, such as the grounded neutral in a residential electrical system.
- Ground Fault. An unintentional electrically conductive connection between an ungrounded conductor of an electrical circuit and the normally non-current-carrying conductors, metal enclosures, metal equipment, or earth. F66
- Ground-Fault Circuit Interrupter (GFCI). A device intended for the protection of personnel that functions to de-energize a circuit or portion thereof within an established period of time when a ground-fault current exceeds the values established for a Class A device. Per UL 943, Class A GFCIs must open the circuit when an imbalance of 6 milliamps or more is detected. F65,66
- **Ground-Fault Circuit Interrupter, Special Purpose (SPGFCI).** A device intended for the detection of ground-fault currents, used in circuits with voltage to ground greater than 150V, and within an established period of time when a ground-fault current exceeds the values established for Class C, D, or E devices. An example would be a 480V 3-phase commercial dishwasher.

Licensed exclusively to

113 Copyright © 2025 by Douglas Hansen, Redwood Kardon & Skip Walker, and Glenn Mathewson – Unauthorized reproduction or redistribution prohibited

THE GLOSSARY IS ALWAYS AVAILABLE FROM THE BUTTON AT THE TOP OF THE SCREEN.

- Ground-Fault Current Path. An electrically conductive path from the point of a ground fault on a wiring system through normally non-current-carrying conductors, grounded conductors, equipment, or the earth to the electrical supply source. An *Effective Ground-Fault Current Path* is an intentionally constructed, low-impedance electrically conductive path designed and intended to carry current during ground-fault events and that facilitates operation of the OCPD or ground-fault detectors. Earth is not an effective ground fault current path.
- Ground-Fault Detector-Interrupter, DC (GFDI). A device that provides protection for PV system PC circuits by detecting a ground fault and interrupting the fault path in the DC circuit.

Ground-Fault Protection of Equipment (GFPE). A system intended to protect equipment

ult currents by de-energizing the circuit. This protection is of the OCPD that protects conductors, and at a higher provide personnel protection. *p.***38**

r circuit conductor that is intentionally grounded. In resigrounded conductor.

ing object through which a direct connection to earth is

(GEC). A conductor that connects the system grounded grounding electrode or to a point on the grounding elec-

- Grounding Electrode System (GES). F13 The conductive metallic elements installed in the earth and bonded together to form a grounding electrode system.
- **Grounded, Functionally.** A photovoltaic system that has an electrical ground reference for operational purposes that is not solidly grounded.
- Habitable Room. A room in a building for living, eating, sleeping, or cooking but excluding bathrooms, toilet rooms, closets, hallways, storage or utility spaces, and similar areas.
- **Harmonic Currents.** A sinusoidal wave whose frequency is an integer multiple of the fundamental frequency. These frequencies are produced by equipment with non-linear loads, including computers, rectifiers, electronic ballasts for discharge lighting, and similar equipment. Because of harmonic currents, the neutral conductor of a 4-wire 3-phase system can carry as much or more current than the phase conductors.
- Hermetic Refrigerant Motor-Compressor. A combination consisting of a compressor and motor, both of which are enclosed in the same housing, with no external shaft or shaft seals, with the motor operating in the refrigerant.
- Hydromassage Bathtub. A permanently installed bathtub equipped with a circulating piping system, pump, and associated equipment, and designed to accept, circulate, and discharge water upon each use. F85

GLOSSARY E - I