Code Check[®] Electrical 8th Edition

Based on the 2017 NEC[®] – Including selected changes to the 2014 & 2017 NEC BY DOUGLAS HANSEN, REDWOOD KARDON & SKIP WALKER

Illustrations & Layout: Paddy Morrissey

© 2017 by the authors and The Taunton Press, Inc. ISBN xxx-x-xxxx-x Code Check® is a registered trademark of The Taunton Press, Inc., registered in the U.S. Patent & Trademark Office.

ode Check Electrical 8th Edition is a field guide to common code issues in residential electrical installations. It is based on the 2017 National Electrical Code (NEC)®. Significant changes in the 2017 NEC and the 2014 NEC are highlighted throughout the text and summarized on p.31, so this book is current for areas using either the 2014 or 2017 NEC. Before beginning any electrical project, check with your local building department to determine the code edition used in your area. In addition to a model code, energy codes and utility rules may also apply to electrical installations. The smoke & carbon monoxide alarm rules here are from the 2015 edition of the International Residential Code, published by the International Code Council.

KEY TO USING CODE CHECK ELECTRICAL

Each line that begins with a checkbox is a rule in the 2017 NEC, and the specific code section is at the right end of the line. The following example is from **p.3**:

Max 6 disconnects to shut off power at service _____230.71

This line summarizes the code rule found in section 230.71 requiring no more than 6 disconnects to shut off all power at the service.

A line might have more than one code rule, and the code sections are separated by an ampersand - the "&" symbol, as in this example from **p.10**:

☐ Min #6 Cu to bond IBT to service or GEC ______ 250.94A4&5

This line tells us that the intersystem bonding terminal must be bonded to the service or the grounding electrode conductor, and the rules for this are found in 250.94(A)(4) and in 250.94(A)(5). This line is also an example of the way that Code Check uses abbreviations (see next column) to condense information. Also note that the actual code citation uses parantheses around letters and numbers after the initial code section, and we omit those parantheses to save space.

References to figures and tables in this book are shown by bold colored letters and numbers, as in this example from **p.5**:

Cover from top of cable or conduit to finish grade per T1, F4 _____300.5A

This line tells us that the amount of cover required over underground conduits and cables is found in Table 1 and is illustrated in Figure 4.

Exceptions are noted by text lines that end in EXC, and the following line then shows the exception to the rule just cited, as in this example from **p.4**:

Each building or structure req's GES F3, F6 EXC	250.32A
 Building or structure w/ only 1 branch circuit & w/ EGC	250.32AX

These lines tell us that each building or structure requires a grounding electrode system, with the exception of buildings supplied by a single branch circuit that contains an equipment grounding conductor.

Code changes are highlighted by placing the code citation in a different color. The superscript number at the end of the citation refers to the code change number on **p.31**, as in this example from **p.15**, under the subheading of "Locations requiring GFCI protection"

Outlets supplying dishwashers_____

210.8D³²

This line tells us that all dishwashers in residential construction now require GFCI protection. The reference number for code change 32 on page 31 tells us this change took place in the 2014 NEC.

The 2017 NEC had a follow-up change to this section, also noted on p.15:

DW cords 3 ft 6 ¹ / ₂ ft. measured from back of appliance	_422.16B2(3) ⁵²
DW receptacle in space adjacent to dishwasher	422.16B2(6)52

These lines tell us that dishwasher receptacles can no longer be in the space directly behind the dishwasher, and the maximum allowable cord length has been increased since the cord must reach to the adjacent space. This is also an example of how sections of the NEC are interconnected. GFCI devices must be readily accessible (a rule that first came into the 2011 NEC) and a receptacle directly behind the dishwasher would be accessible, but not readily accessible.

ABBREVIATIONS

 $\mathbf{A} = amp(s)$, amperage, amps LFNC = liquidtight flexible nonmetallic conduit AC = air conditioning AC = alternating current max = maximum MC = metal-clad cable AC = armored cable, a.k.a. "BX" MFR = manufacturer(s) AFCI = arc-fault circuit interrupter min = minimum **AFF** = above finished floor or grade **n/a** = minimum AHJ = Authority Having Jurisdiction **NEC** = National Electrical Code AI = aluminum**NEMA** = National Electrical Manufacturers AMI = in accordance with manufacturer's instructions Association **NFPA** = National Fire Protection AWG = American Wire Gauge, commonly Association stated as "number" (#8 = 8 AWG) $\mathbf{NM} =$ nonmetallic-sheathed cable **CO** = carbon monoxide **OBC AFCI** = Outlet Branch Circuit AFCI **COM** = communication wire O.C. = on center cu. = cubic, as in cu. in. **OCPD** = overcurrent protection device Cu = copper (breaker or fuse) **DC** = direct current **PV** = photovoltaic EGC = equipment grounding conductor **PVC** = rigid polyvinyl chloride conduit **EMT** = electrical metallic tubing req = require, requiring, requirement **ENT** = electrical nonmetallic tubing, a.k.a. req'd = required "Smurf tubina" req's = requires **EV** = electric vehicle EVSE = electric vehicle supply equipment RMC = rigid metal conduit RS = rapid shutdown (photovoltaics) **EXC** = exception(s) RTRC = reinforced thermosettting resin conduitFMC = flexible metal conduit SCC = short circuit current ft. = foot, feet SCCR = short circuit current rating GEC = grounding electrode conductor **SER** = service entrance cable (round) **GES** = grounding electrode system **SEU** = service entrance cable (flat) **GFCI** = ground-fault circuit interrupter SFD = single-family dwelling GFPE = ground-fault protection of equipment **sq.** = square, as in sq. in. **hp** = horsepower IMC = intermediate metal conduit temp = temperature TR = tamper-resistant **in.** = inch(es) **UF** = underground feeder cable **IBT** = Intersystem Bonding Terminal **USB** = universal serial bus IRC = International Residential Code **USE** = underground service entrance kcmil = 1,000 circular mil units cable (conductor size - formerly MCM) L&L = listed & labeled, listing & labeling $\mathbf{V} = \text{volt}(s)$, such as a 120V circuit VA = volt-ampere(s), units of apparent LCDI = leakage-current detector-interrupter power **LED** = light-emitting diode w/ = with**Ib.** = pound(s) $\mathbf{W} = watt(s)$, units of true (useful) power **LFMC** = liquidtight flexible metal conduit

WR = weather-resistant

For further information, articles by the Code Check team and why Ben Franklin is featured in the book visit: **www.codecheck.com**

After proving lighting and electricity are the same thing, Ben invented the lightning rod, which he believed was his most important invention.

Benjamin Franklin was chosen as the main character in our Code Check illustrations for a number of reasons. The "First American's" insatiable curiosity, scientific genius, and civicmindedness drove him to promote fire safety, safe exiting, public sanitation, improved heating methods to reduce air pollution, and of course, electricity. Franklin contributed to each of the four main disciplines of building inspection: Building, Plumbing, Mechanical, and Electrical. To find out more, visit:

www.codecheck.com/cc/Ben.html

SERVICES

OVERHEAD SERVICE DROP CLEARANCES

Service drop conductors are protected by isolation; they typically have no protective outer jacket and no overload protection at their source. Utility rules may over-ride the specifications in the code, so check with the AHJ to determine variations from the clearances below. These clearances also apply to overhead feeders. Mandland also ------

Vertical above Roof F1	17 NEC
□ < 4-in-12 slope: min 8 ft. A EXC	230.24A
3 ft. OK if roof area guarded or isolated	230.24AX5
□ ≥ 4-in-12 slope: min 3 ft. B EXC	230.24AX2
• Over eaves 18 in. OK for ≤ 4 ft. horizontal 6 ft. of conductor C	230.24AX3
□ Maintain req'd distance for 3 ft. past roof edge EXC	230.24A
 Edge clearance above roof is not req'd where overhead 	
conductors attach to side of building	230.24AX4
Metal support structures for conductors passing over	
roofs req bonding to neutral of service drop	230.29 ¹

Vertical above Grade F1

Vertical above Grade F1	17 NEC
\Box 10 ft. above final grade to lowest point of drip loop	_ 230.24B1
Area accessible only to pedestrians: 10 ft. D	_ 230.24B1
🗌 General above grade & driveways: 12 ft. 匡	_ 230.24B2
Above roads or parking areas subject	
to truck traffic: 18 ft. F	_ 230.24B4
\Box Any direction < 10 ft. horizontal from swimming pool water: 22 ¹ / ₂	ft680.8A
Clearance from Openings & Communication Wires F1	17 NEC
Vertical above decks & balconies: 10 ft. G	230.9B
Erom side of area above decks & balconies: 3 ft	
	230.9A
Below or to sides of openable window: 3 ft.	230.9A 230.9A
Below or to sides of openable window: 3 ft. Communications wire min 12 in. to parallel power wires	230.9A 230.9A 800.44A4
Holm side of area above decise a baconies. o it. Below or to sides of openable window: 3 ft. Communications wire min 12 in. to parallel power wires Communications wires above roofs same as power conductors	230.9A 230.9A _ 800.44A4 800.44B

Window & door clearances apply to open conductors - not to conductors contained inside a raceway or a cable with an overall outer jacket. Clearance req's above a window are typically per the local utility.

GROUNDING ELECTRODES ♦ GROUNDING ELECTRODE CONDUCTORS

GROUNDING ELECTRODES

Grounding provides a path for lightning and reduces electrical "noise" on communications equipment. Common grounding electrodes in residential construction are metal underground water piping, ground rods, and concrete-encased electrodes. Other types include ground rings, metal plates, metal well casings, listed grounding electrode systems, underground tanks, and the steel frame of a building connected to earth as described below. Gas piping is not an acceptable grounding electrode.

Grounding Electrode System (GES) F6	17 NEC
Use all electrodes that are available on premises	
during the course of construction	250.50
Bond all electrodes to form a GES	250.50
Gas pipe not OK as grounding electrode	_ 250.52B1
Water Pipe	
\Box Use metal water pipe if \geq 10 ft. in contact with soil F6	_ 250.52A1
Bond around water meters, filters, etc	_ 250.53D1
\Box Water pipe cannot be the sole electrode- it must be	
supplemented by another type of electrode	_ 250.53D2
Pipe, rod, or plate that supplements water pipe must comply with	
25 ohm rule or be supplemented by another electrode	_ 250.53D2
Metal well casing OK as electrode (e.g., plastic water service)	_ 250.52A8
Ground Ring	
Min #2 copper encircling building in direct contact w/ earth F6 _	_ 250.52A4
Min 30 in. below surface of earth	250.53F
Metal In-Ground Building Structure	
☐ Metal in-ground support structures w/10 ft. in direct contact	
w/ earth or encased in concrete in earth (piles)	_ 250.52A2

Ground Rods

		-
	Unlisted pipe electrodes min 3/4 in. diameter & galvanized	250.52A5a
	Copper-clad rods min ⁵ /8 in. diameter unless listed for less	250.52A5b
	Rods min 8 ft. in contact with soil F6	250.53G
	Drive rods vertical & fully below grade EXC	250.53G
	 If bedrock encountered, rod may be buried horizontally 	
	2 ¹ /2 ft. deep or driven at 45° angle	250.53G
	Clamp above grade OK if protected F8-10	250.53G
	Must be supplemented by another electrode	
	that is not a water pipe EXC	_ 250.53A2
	• Not req'd if rod resistance ≤ 25 ohms	250.53A2X
	Supplemental rods/plates spaced min 6 ft. apart (16 ft. preferred)	_ 250.5A3
Со	ncrete-Encased Electrode (Ufer)	
	Ufer = 20ft #4 or larger rebar near bottom of footing or 20 ft. of	
	min #4 Cu wire near bottom of footing, min 2 in. encasement	250.52A3
	Ufer must be used if present during construction	250.50
	Ufer not req'd in existing building if concrete would	
	have to be disturbed to gain access	250.50X
	OK to bond sections of rebar with ordinary steel	
	tie wires to obtain 20 ft. continuous length	_ 250.52A3
	Can be 20 ft. of vertical steel in pier in direct earth contact	_ 250.52A3
	Where multiple Ufers present, only 1 req'd to be bonded to GES.	_ 250.52A3
Pip	es & Plates	
	Pipe electrodes min ³ /4 in. diameter & galvanized	_ 250.52A5
	Ferrous plates min 1/4 in. thick & min 2 sq. ft. in contact with soil	_ 250.52A7
	Aluminum not permitted as grounding electrode	250.52B2

17 NEC

PANELBOARDS & CABINETS (CONTINUED)

Ne	utral Conductors	17 NEC
	Bond neutral, EGCs, & enclosure in service panels F16	250.24B
	Isolate neutrals in subpanels F17	250.24A5
	Continuity of neutrals not to depend on enclosures	200.2B
	Each neutral conductor req's individual terminal	408.41
	Neutral cannot serve more than one circuit or MW circuit	200.4A
	Identify or group each neutral with its circuit conductors EXC	200.4B ¹⁷
	When grouping is obvious, such as a cable system	_200.4BX1 ¹⁷
	When passing through a box with no loop or splice	_200.4BX2 ¹⁷
	Neutrals factory-applied white or grey EXC	200.6A
	 Conductors ≥ #4 white or grey tape encircling ends 	200.6B
	White not OK on ungrounded conductors EXC	200.7A
	White conductors of a cable assembly OK as ungrounded	
	conductors with tape (not white or green) encircling ends	200.7C
ос	PDs	
	Bus req's overcurrent protection on supply side EXC F16,17	408.36
	Service equipment bus w/ >1 main disconnect	408.36X1-3
	Breakers must be listed or classified AMI for panel	110.3B
	Protect ungrounded conductors w/ OCPDs T11,15	240.4
	2-pole breaker or 2 single-pole breakers w/ approved handle	
	ties req'd for multiwire circuits or for 240V circuits F17	240.15B1&2
	2-pole breaker or 2 single-pole breakers w/ approved handle	
	ties req'd for receptacles on shared yoke	210.7
	Backfed breakers secured in place EXC	408.36D
	Output circuits from listed utility interactive PV inverter	705.12B5
Par	nel Wiring	
	Torque all breakers & terminals AMI 110.3F	8 & 110 14D ¹⁸
	Antioxidant on Al conductors AMI	110 14
	Secure each cable entering papel AMI E16.17.49	312 5C
		012.00
	A still see all states	010 5
	Avoid crowding of conductors	312.7
	Splices & taps in panels OK to 40% fill, 75% max cross-section	_ 312.8A1&2
	Power-monitoring devices OK it listed & meeting above fill regis	312.88**
	Feed-through conductors OK to pass through panel if warning	010.040
	label applied that identifies power source is applied to enclosure	e 312.8A3
	Win bending space for conductors not entering or leaving	010 001
	wall opposite terminals ("L" bend) per 17A, F18	312.6B1
	Min bending space for conductors entering or leaving	010 000
	wall opposite terminals ("S" bend) per 1/B, F18 EXC	312.682
	• I/A distance from terminal to wall UK if conductor enters	010 00014
_	or leaves in gutter & meets distance per 17A, F18	_312.6B2X1
	Conductors entering from back wall req 17A distance	
	to cover and I/B distance from terminals F18	408.55C ²⁰

MINIMUM WIRING SPACE OPPOSITE TERMINALS²¹ TABLE 7 WIRE SIZES & REQ'D DISTANCES (INCHES)

L Bends – Wire not through wall		S Bends – Wire through wall				
opposite terminal			B opposite terminal			
	Cu Wire	Al Wire ¹	Distance ²	Cu Wire	Al Wire ¹	Distance ³
	14–10	12 –8	n/a	14 – 10	12 –8	n/a
	8-6	6 -4	1 1⁄2	8	6	1 1⁄2
	4–3	2 –1	2	6	4	2
	2	1/0	21/2	4	2	3
	1	2/0	3	3	1	3
	1/0-2/0	3/0-4/0	31⁄2	2	1/0	31⁄2
	3/0-4/0	250-300	4	1	2/0	41⁄2
	250	350	41/2	1/0	3/0	51⁄2
	300-350	400-500	5	2/0	4/0	6
	400-500	600-750	6	3/0	250	61⁄2
	600-700	800-1000	8	4/0	300	7

Compact stranded aluminum conductors using AA-8000 series alloys.²¹

When a lug lies at an angle, the distance can be measured along the length of the wire in the direction 2.

that the wire leaves the terminal. 3. The distance is measured in a straight line from the lug in a direction perpendicular to the panel wall.

PANELS WIRE BENDING SPACE MULTIWIRE CIRCUITS

as incandescent bulbs growing brighter or dimmer as other loads change, could indicate a loose neutral either at a branch circuit or at the utility. 240V Utility Transformer Secondary 120V 0.83A 0.5A 22 ۶Ā 52 ς Σ Neutral point 120V 120V 120V 120V 200V 40\ 60W 60W 300W 300W 300W 300W В С

A

- A **PROPER CIRCUIT** 2 unequal loads are fed by a 3-wire circuit. The neutral carries the imbalance between the 2 loads¹.
- **B OVERLOADED NEUTRAL** Without voltage potential between the hot conductors, the neutral carries the sum of the loads. In a 3-conductor NM cable, the black & red wires must originate from different poles.
- **C** OPEN NEUTRAL Two unequal loads in series across 240V from the transformer. The load with lowest resistance sees the lower voltage. Voltage at each load depends on other loads and is unstable.
- 1. On 120/208 systems, the neutral always carries current, even in properly balanced circuits. The principles here still apply.

13

17 NEC

210.4A

300.13B

210.4B

200.4BX1

200.4BX2²²

Open neutral

).83A

100

ARC-FAULT CIRCUIT INTERRUPTERS (AFCIs)

AFCIs provide fire protection by tripping when an arcing fault is detected. AFCI breakers and GFCI breakers look similar F21,24, and you must read the label to determine if a breaker is an AFCI or a GFCI. Dual function breakers that provide both AFCI & GFCI protection are also available F21. Outlet branch-circuit type (OBC) AFCIs are also available, including ones that are also GFCIs, and the codes have changed substantially to recognize these new methods.

The number of areas requiring AFCI protection expands in each code cycle. The time to plan for the AFCIs is during the rough wiring, so that separate cables are provided for the circuits requiring AFCI protection. Not all brands and models of AFCI are compatible with multiwire circuits.

Beginning January 1, 2008, all AFCIs were req'd to meet the UL standard for "combination" types rather than the older "branch/feeder" type. Combination AFCIs provide a broader range of protection than branch/feeder types. OBC AFCIs provide the same range of protection as combination types, and when installed at the first outlet box on a circuit protected by an older "branch/feeder" AFCI, that circuit then complies with the 2014 and 2017 NEC.

Areas Requiring AFCI Protection

Req'd for all 120V 15A & 20A branch circuits supplying outlets or devices in family rooms, dining rooms, living rooms, parlors,

libraries, dens, bedrooms, sunrooms, recreation rooms, closets,

hallways kitchens, laundry areas & similar rooms EXC_ 210.12A²³

• May be omitted on individual circuit to a fire alarm circuit in RMC, IMC,

EMT, or steel-armored AC or MC cable w/ metal junction boxes that is part of central-station system in accordance w/ NEC Article 760 210.12AX

Reg'd for all 120V 15A & 20A branch circuits supplying outlets & devices in dormitory unit bedrooms, living rooms,

hallways, closets, bathrooms, & similar rooms 210.12B²⁴

17 NEC

AFCI Protection Methods	I/ NEC
Combination-type AFCI at origin of branch circuit	210.12A1
Branch/feeder-type AFCI at origin of branch circuit &	
OBC type at first outlet box on branch circuit,	
w/ outlet box marked as first on circuit	210.12A2 ²⁵
Ordinary circuit breaker at origin of circuit & RMC,	
IMC, EMT, Type MC, or steel-armored AC cable to	
first outlet, with OBC AFCI at first outlet	210.12A5
Ordinary circuit breaker at origin of circuit & metallic or	
nonmetallic conduit or tubing encased in min. 2 in. concrete	
to first outlet & OBC AFCI at first outlet	210.12A6

In addition to the 4 methods above, the NEC also includes "supplemental arc protection breakers" & "system combination" AFCIs. These non-AFCI breakers are used in conjunction with OBC type AFCIs as the first outlet on the circuit to create a system that is listed. As of this writing, neither of these systems actually exists. These two additional methods depend upon UL testing that is ongoing, and will not work with older circuit breakers.

Extensions, Modifications, & Replacements

☐ If wiring extended, modified, or replaced in areas where	
protection currently req'd, provide protection by	
combination AFCI at origin of branch circuit or OBC	
AFCI at first outlet of existing branch circuit F20 EXC	210.12D
 Not req'd when extension of conductors ≤ 6 ft. & 	
does not include added outlets or devices	210.12DX ²⁶
Replacement receptacles in areas where AFCI	
protection currently req'd must be OBC AFCI or be	
protected by combination AFCI or OBC AFCI EXC F20	406.4D4
• Replacements w/ GFCI receptacle in older 2-wire system	S
where panel does not accept AFCIs & no practical means	
available to install EGC & no added wiring to receptacle &	
dual-function AFCI/GFCI receptacles not available	_ 406.4D4X1-4 ²⁷

BRANCH CIRCUITS & OUTLETS ◆ KITCHENS

BRANCH CIRCUITS & OUTLETS

Branch circuits are the permanent wiring between the final OCPDs (overcurrent protective devices – fuses or breakers) and the outlets that provide power to electrical equipment. Separate circuits are required for the kitchen small appliance circuits, bathroom receptacles, laundry, garage, central heating equipment, and large appliances. In some cases, as described below, these are "individual" circuits, with only one piece of equipment on the circuit. With few exceptions, required receptacle outlets must be listed tamper-resistant types.

Circ	cuit Sizes, Number & Load Limitations	17 NEC
	Rule of thumb: min 1 general-purpose circuit per 500 sq. ft.	220.12
	Load not to exceed rating of branch circuit	220.18
	Min size = 125% of continuous load + 100% of noncontinous load	210.19A
	Continuous load = max current for 3 hours or more	100
	Min size for branch circuit wiring #14 Cu	210.19A4
	Individual circuit = supplying only one piece of equipment	100
	Branch circuit ratings for other than individual circuits	
	must be 15A, 20A, 30A, 40A, or 50A	210.18
	Single piece of cord-&-plug-connected equipment not permanently	
	fastened in place max 80% of 15A or 20A branch circuit	210.23A1
	Max single cord-&-plug-connected load on multi-receptacle	
	circuit not to exceed 80% of receptacle rating	210.21B2
	Lights & receptacles OK on same 15A or 20A except small	
	appliance circuits, bath receptacle circuit, laundry circuit	210.23A
Rec	ceptacles – General	
	Receptacles for specific appliances (laundry, garage door opener)	
	within 6 ft. of appliance location	210.50C
	Flexible cords not OK as fixed or concealed wiring	400.12
	Receptacles must be mounted with 6-32 machine screws	406.5 ³³
Rec	ceptacle Types and Ratings	
	All receptacles on 15A & 20A circuits grounding type	406.4A
	Receptacles for direct Al connection marked "CO/ALR"	406.3C
	Receptacles reg'd by 210.52 listed TR type EXC	406.12
	• Receptacles located > $5^{1/2}$ ft. above floor 4	
	Replacement receptacles listed TR type EXC	406.4D5
	Replacement non-grounding type receptacles (see p.28)	406.4D5
	15 & 20A nonlocking receptacles in damp or wet	
	locations listed weather-resistant types4	06.9A&B1
	Single receptacles rated not less than branch circuit	210.21B1
An e	xample would be a single (not duplex) 20A receptacle on an individual brai	nch circuit
for a	microwave oven / range hood with a cord & plug connection allowed by 42.	2.16B4.
	Multiple receptacles on branch circuit per T8	210.21B3
For the	he purposes of these rules, a duplex receptacle is 2 receptacles, not a "single" i	receptacle.

TABLE 8	RECEPTACLE RATINGS FOR MULTIPLE RECEPTACLES ON 1 CIRCUIT 210.21.B3		
Circuit Rating	Receptacle Rating	Circuit Rating	Receptacle Rating
15A	not over 15A	40A	40 or 50A
20A	15 or 20A	50A	50A
30A	30A		

