Code Check Building Fourth Edition

BY DOUGLAS HANSEN & REDWOOD KARDON

Illustrations & Layout: Paddy Morrissey

© 2016 by The Taunton Press, Inc. ISBN-13: XXX-X-XXXXX-XXXX

Code Check® is a registered trademark of The Taunton Press, Inc., registered in the U.S. Patent & Trademark Office. Printed in China.

Based on the 2015 International Residential Code[®] Including major changes from the 2012 edition

For updates and information related to this book, visit www.codecheck.com

SCOPE OF THIS BOOK

Code Check Building is a field guide to commonly used provisions of chapters 1-10 of the 2015 editions of the International Residential Code (IRC). The scope of the IRC is 1- & 2-family dwellings and townhouses and their accessory structures (such as detached garages). A townhouse, in this sense, is a single family dwelling unit constructed in a group of 3 or more units with each unit extending from foundation to roof and open to a yard or public way on at least 2 sides. In all cases, the scope of the IRC and this book is limited to structures not more than 3 stories above grade plane in height. Other books in the Code Check series deal with the electrical, mechanical, and plumbing aspects of the IRC. Multi-family dwelling units are within the scope of the International Building Code (IBC).

The IRC contains prescriptive requirements. Within specified geologic & climatic conditions, it provides construction methods that do not require further engineering design. The methods and materials covered in the IRC are not the only ones allowed; rather, they are simply the ones for which there is a standard methodology. As an example, the IRC tells us how far we need to set back the foundation from a slope break (**p.12**). If you want to build it closer than allowed by the IRC, a design professional must apply the engineering requirements of the IBC.

The text lines in Code Check provide a brief summary of a code citation, followed by the code number. The amount of text in Code Check is not the complete code, and we encourage you to refer to the entire code text whenever possible. The full text of each code cited in Code Check is available on line on ICC's web site. For 2015 IRC references, go to http://codes.iccsafe.org/I-Codes.html. For 2012 and earlier IRC references, go to http://publicecodes.cyberregs.com/icod/irc/index.htm.

Always consult with the local building department before beginning a project. They will provide information on which model code editions are used in your area and on the state or local amendments that apply. The codes for some states and cities are also available on ICC's web site, at http://codes.iccsafe.org/

This book is primarily geared to wood frame buildings over concrete or CMU foundations. Other topics covered in the IRC, such as wood foundations, structural insulated panel (SIP) construction, insulated concrete forms (ICF), and steel framing cannot be included because of space limitations.

The actual code lines in the IRC begin with the letter R - we have omitted the R to save space.

KEY TO USING THIS BOOK

The line for each code rule starts with a checkbox and ends with a code reference from the 2015 IRC. Exceptions and lists start with a bullet, and exception lines also end with a code reference. Changes from the 2012 code are highlighted by having the reference in a different color and an endnote to the table on the inside back cover. In some cases, the change occurred in the 2012, as shown in the table. Example from **p.12**:

□ Footings supported on undisturbed soil or engineered fill **F18**_____403.1 This line is telling us that section 403.1 req's footings on previously undistirbed soil & that figure 18 is an example.

Exceptions to a code rule are noted by EXC at the end of a line, followed by a bulleted line with the exception, as in this example from **p.8**:

Threshold at req'd egress door max 11/2 in. above landing or floor EXC F7 311.3.1

• 73/4 in. below threshold OK if door not swinging over landing _____ 311.3.1X These lines tell us that section 311.3.1 limits the req'd egress door threshold height to 11/2 in. except for a landing which can be 73/4 inches below if the door does not swing over it, and .1 req's footings on previously undistirbed soil & that figure 7 is an example.

Significant changes are given a different color code citation followed by a superscript number that is commented on in the inside back cover, as in this example from **p.4**:

☐ Min. 6 ft. 8 in. bathrooms, toilet rooms & laundry rooms ______305.1¹⁰ The rule for a min ceiling height has been lowered from 7 ft. to 6 ft. 8 in. for these rooms. It can be found in section 305.1 of the IRC. On the inside back cover, this line is explained as code change #10.

Special thanks to Skip Walker for his invaluable assistance in making this book, cheers!

ABBREVIATIONS

AMI	In accordance with	LL	Lot Line
	Manufacturers' Instructions	max	maximum
ASTM	American Society for Testing &	min	minimum
	Materials	mph	miles per hour
во	Building Official	o.c.	on center
BWL	Braced Wall Line	PT	Pressure Treated
BWP	Braced Wall Panel	psf	pounds per square foot
cfm	cubic feet per minute	psi	pounds per square inch
СМО	Concrete Masonry Unit	req	require
DFE	Design Flood Elevation	req'd	req'd
exc	except	req's	requires, requirements
EXC	Exception (follows in next line)	SDC	Seismic Design Category
FRT	Fire-Retardent Treated	SDC D	SDC D ₀ , D ₁ , & D ₂
FSD	Fire Separation Distance	UL	Underwriters Laboratories
GB	Gypsum Board	w/	with
hr	hour	w/o	without
IBC	International Building Code	WRB	Water Resistive Barrier
L&L	Listed & Labeled	WSP	Wood Structural Panel

ALTERNATIVE DESIGN DOCUMENTS

The American Forest and Paper Association publishes the *Wood Frame Construction Manual for One- and Two-Family Dwellings (WFCM)* which can be used as an alternate to IRC designs for wood framing and can be used for buildings where wind design is required.

The American Iron and Steel Institute (AISI) publishes the *Standard for Cold-Formed Steel Framing – Prescriptive Method for One- and Two-Family Dwellings* (*AISI S230*) which can be used as an alternative to the IRC. It can also be used for buildings where wind design is required.

The American Concrete Institute (ACI) publishes two documents that supplement the prescriptive rules of the IRC. These are ACI 318 – Building Codes for Structural Concrete, and ACI 530 – Building Code Requirements for Masonry Structures.

The Truss Plate Institute (TPI) publishes *TPI 1 - National Design Standard for Metal Plate Connected Wood Truss Construction*, which is mandatory for metalplate-connected truss design. TPI also contributes to *BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.*

The American Society of Civil Engineers (ASCE) publishes ASCE 24 –Flood-Resistant Design and Construction, which can be used as an alternative to the prescriptive requirements of IRC R322. It is mandatory for construction in identified floodways.

The American Society of Civil Engineers (ASCE) publishes *ASCE* 7 –*Minimum Design Loads for Buildings and Other Structures.* It is the basis of the structural engineering provisions of the IBC. It can be used for buildings where wind design is required.

The International Code Council (ICC) publishes *ICC 600 – The Standard for Residential Construction in High-Wind Regions.* It can be used for buildings where wind design is required.

SEQUENCE OF THE BOOK

Pages 2–10 of this book cover topics that are relevant to planning, inspections, and non-structural issues.

Pages 11–23 deal with foundations & framing.

Pages 24–30 deal with ladding, coverings, and other items typically covered in the final inspection.

The inside back cover summarizes significant changes in the 2015 IRC.

GLOSSARY

The following glossary is an abbreviated version of the full glossary for this book, available on line at www.codecheck.com/CCB4/Glossary.pdf. Chapter 2 of each of the codes referenced above contains a more complete list of authoritative definitions.

Aspect ratio: The ratio of longest to shortest dimensions, or for wall sections, the ratio of height to length.

Attic: The unfinished space between the ceiling assembly of the top story and the roof assembly.

Attic, habitable: A finished or unfinished area meeting minimum room dimension and ceiling height requirements and enclosed by the roof assembly above, knee walls (if applicable) on the sides, and the floor-ceiling assembly below. Habitable attics are sometimes referred to as lofts.

Basement: A portion of a building that is partly or completely below grade.

Braced wall line (BWL): A straight line on the building plan indicating the location of the lateral resistance provided by wall bracing. It does not necessarily align with the exact location of the bracing.

Braced wall panel (BWP): A full-height section of wall constructed to resist shear forces by application of bracing materials.

Building thermal envelope: The basement walls, exterior walls, floor, roof, and other building elements that enclose conditioned space.

Connector: A device such as a joist hanger, post base, hold-down, mudsill anchor, or hurricane tie used to connect structural components-*also see Fastener*.

Cripple wall: Wood-framed wall extending from the foundation to joists below the first floor. Found in the underfloor area.

Dampproofing: A coating intended to protect against the passage of water vapor through walls or other building elements. It is a lesser degree of protection than water-proofing.

Dead load: The weight of all materials of the building and fixed equipment.

Diaphragm: A horizontal or nearly horizontal system, such as a floor, acting to transmit lateral forces to the vertical resisting elements.

Fastener: Generic category that includes nails, screws, bolts, or anchors-also see Connector.

Fire separation distance: The distance measured perpendicular from the building face to the closest interior lot line or to the centerline of a street, alley, or public way.

Grade: The finished ground level adjoining the building at all exterior walls.

Habitable space: Space in a building for living, sleeping, eating, or cooking. Bathrooms, bathroom closets, hallways, storage, or utility areas are not considered habitable space.

Live loads: Loads produced by use and occupancy of the building and not including wind, snow, rain, earthquake, flood, or dead loads.

Monolithic: Concrete cast in one continuous operation with no joints, such as a footing and floor slab or a footing and foundation stem wall.

Perm: The unit of measurement of water vapor transmission through a material, based on the number of grains of water vapor at a given pressure differential. Vapor retarders are rated in perms.

Plain concrete or masonry: Structural concrete or masonry with less reinforcement than the minimum amount specified for reinforced concrete or masonry.

Seismic Design Category (SDC): Classification assigned to buildings based on the occupancy category & severity of earthquake ground motion expected at the site.

Story: That portion of a building that is between the upper surface of one floor and below the upper surface of the next floor above or the roof.

Story above grade: The parts of the building that are entirely above grade, or basements that are more than 6 feet above grade for more than 50% of the total building perimeter or more than 12 feet above ground at any point.

Townhouse: Single-family dwelling unit constructed in groups of three or more attached units in which each unit extends from foundation to roof and with a yard or public way on at least two sides.

Waterproofing: Materials that protect walls or other building elements from the passage of moisture as either vapor or liquid under hydrostatic pressure.

Wood structural panel (WSP): A panel manufactured from veneers (plywood) or wood strands (OSB) and bonded with waterproof synthetic resins. Wood structural panels must bear a grade stamp and are used in floors, roof diaphragms, and shear walls.

INTRODUCTION CODES ABBREVIATIONS TABLE OF CONTENTS GLOSSARY

PLANNING, PERMITS & INSPECTIONS CLIMATIC/GEOGRAPHIC DESIGN STRUCTURAL

PLANNING, PERMITS & INSPECTIONS

Prior to starting a project, approval is needed from the local planning and building departments; specific requirements vary from one jurisdiction to another. Local or state adoption of the codes may also include amendments that differ from the requirements shown in this book. Plans by a licensed design professional will bear a signature and stamp. In some cases, special inspections are required to be conducted either by 3rd party agencies or the engineer of record. The frame inspection is an important milestone. Bank draws are sometimes based upon passing that inspection.

Plans & Permits 15 IRC Permits req'd for new work, additions, repairs & alterations ____ ____ 105.1 Permit application must identify proposed scope of work, address, intended use, & valuation & include construction documents _____ 105.3 □ Site or plot plan reg'd for new structures & additions _____ 106.2 ☐ If in flood hazard area, plans to include DFE, elevation of lowest floor & bottom of lowest structural member_____106.1.41 Local statutes may req stamped plans_____ 106.1 BO may req plans to include BWL locations & methods_____106.1.3² BO may approve alternative materials, design & methods______104.11 Approved permit card req'd to be on site _____ 105.7 Approved plans req'd to be on site _____ ___ 106.3.1 15 IRC 105.2 Work Exempt from Permits

- 1-story detached accessory structures ≤ 200 sq. ft. floor area
- Fences ≤ 7 ft. high*
- Retaining walls \leq 4 ft. from bottom of footing to top of wall & no surcharge
- Water tanks on grade \leq 5,000 gallons & \leq 2:1 height/width ratio
- Sidewalks & driveways
- Painting, papering, tiling, carpeting, cabinets, countertops, similar finish work
- Pre-fab pools < 24 in. deep (check local may req electric permit)
- Swings & playground equipment
- Window awnings projecting ≤ 54 in. & requiring only exterior wall support
- Decks ≤ 200 sq. ft. & ≤ 30 in. above grade & not attached to dwelling & not serving req'd exit door

* The intent of this 2012 code change was to consider that fence posts might be taller than the 6 ft. fence between them. Be sure to check with the local jurisdiction for their interpretation and any local regulations.

. .. D

Required Inspections	15 IRC
Inspection & approval req'd prior to concealing any work	109.4
□ In flood hazard areas, registered design professional req'd to	
document lowest floor elevation before construction above it	109.1.3
Foundation forms & reinforcement prior to placing concrete	109.1.1
□ MEP (mechanical, electrical, plumbing) roughs prior to frame	109.1.2
□ Frame after roof, masonry, bracing, fire & draftstop, & MEP appro	ved 109.1.4
BO may req 3rd party inspection of specified items10	04.4 & 109.2
□ Fire-resistance rated drywall req's inspection before tape & plaste	er 109.1.5.1
□ If in flood hazard area, documentation of elevations must be	
submitted to BO prior to final inspection	109.1.6.1
Final inspection req'd prior to occupancy	109.1.6

2

TABLE 1	ALLOWABLE DEFLECTION OF MEMBERS [T301					
	Deflection					
Rafters ≤ 3:12 slop	e & no finished ceiling attached to rafters	L/180				
Interior walls and p	<i>H</i> /180					
Floors	L/360					
Ceilings w/ brittle f	L/360					
Ceilings w/ flexible	L/240 ³					
All other structural me	L/2401					
Exterior walls - win	H/360					
Exterior walls - win	H/240					
Exterior walls - win	<i>H</i> /180					
Exterior walls - win	<i>H</i> /120					
Lintels supporting r	nasonry veneer walls	L/600				
1. For cantilevers <i>L</i> shall be considered twice the length of the cantilever						

T1 is a performance standard that serves as the design basis for T3 & the span tables for joists, rafters, & studs.

TABLE	Wind Design				RAPHIC DESIGN CRITERIA (FILL-I Subject to Damage From					A :	Maaa		
Ground Snow Load ¹	Speed (mph) ²	Topo- graphic Effects ^{2,3}	Special Wind Region ^{2,3}	Wind-borne debris zone ^{2,3}	Seismic Design Category ²	Weathering (concrete)⁴	Frost line depth ²	Termites ²	Winter Design Temp ²	n Barrier	Hazarde ²	Air Freezing Index ²	Mean Annual Temp²

DESIGN

The first design considerations are geographic. Determine whether the property in a flood hazard area based on FEMA maps or other sources. Determine the design wind speed and the seismic design category from the maps in the IRC. Where these indicate that wind design is required, ASCE-7 or other design standards must be used. Site specific wind maps are available at www. atcouncil.org/windspeed. The IRC assigns a Seismic Design Category (SDC) from A to E, with A the least likely to experience seismic activity, and E the most vulnerable. Category D is further broken down into 3 subparts, D_0 , D_1 , and D_2 . Buildings in SDC E must be designed to the IBC. However, the BO can allow an E to be designated as D_2 (and therefore within the prescriptive scope of the IRC) if the building has no "irregular" portions and has wall bracing continuous in one plane from the foundation to the uppermost story with no cantilevers.

General Design Criteria	15 IRC
Determine climatic & geographic design criteria	301.2
Complete T2 from IRC maps & information from building department	301.2
Non-conventional building elements req design in accordance w/	
accepted engineering practice	301.1.3
Engineered design per IBC permitted for all structures	301.1.3
Flood Hazard Areas	15 IRC
Establish design flood elevation	_322.1.4
□ Buildings in flood hazard areas req design per IRC R322 or ASCE 24	301.2.4
\Box Buildings w/substantial damage of any origin w/ repair costs > 50%	
of value require 100% compliance w/flood-resistant design EXC1	05.3.1.1
 Health and safety improvements req'd by BO or alterations of 	
historic buildings that do not change its designation 10)5.3.1.1 ⁴

Wind Design

Determine ultimate wind speed from maps ______ 301.2.15

- □ If history of damage due to wind speed-up at hills, modify map values to consider topographic effects __________301.2.1.5
- □ Cladding, covering, fenestration, etc., req design for specified pressure loads or per IRC T301.2(2&3) & IRC F301.2(7) _____ 301.2.1
- When wind design req'd per maps, design per ICC-600, ASCE-7, WFCM, AISI S230, or the IBC _______301.2.1.1

□ Glazed openings in wind-borne debris regions must meet ASTM 1886 & 1996 as modified in IRC 301.2.1.2.1 EXC______ 301.2.1.2⁶

 Buildings to 45 ft. high protected w/ pre-cut pre-drilled structural panels to fit on permanently installed anchors on building _____301.2.1.2X⁷

STRUCTURAL PLANNING

For wood or steel studs, the height of individual stories is limited to 11 ft. 7 in., provided the laterally unsupported stud heights do not exceed the amounts in **T15** on **p.19**. The 2015 IRC resolved conflicts between the story height restrictions, bracing requirements, and floor framing height.

Story Height	15 IRC
Stud walls 11 ft. 7in. CMU walls 13 ft. 7 in. EXC	301.3 ⁸
CMU additional 8 ft. bearing height gable end walls	301.3X
Engineered design per IBC req'd when exceeding above	301.3

PLANNING, PERMITS & INSPECTIONS CLIMATIC/GEOGRAPHIC DESIGN STRUCTURAL

15 IRC

WALL FRAMING

Sections 301.3 and 602.3 were each modified for consistency in the 2015 IRC. An engineered design must be provided for walls that exceed the design limits of T15. If the story height limits are exceeded, follow a design in accordance with the International Building Code.

Stud Walls	15 IRC
☐ Studs req full bearing on plate at least equal to stud width	602.3.4
□ Studs continuous from sole plate to top plate EXC	602.3
Jack studs, trimmer studs & cripple studs	_602.3X
\Box Lumber req's grade mark or certification by lumber grading agency _	602.1.1
End-jointed lumber OK if identified by grade mark	602.1.2
End-jointed lumber in fire rated assemblies req's "HRA" mark	602.1.2 ⁴¹
\Box Utility grad studs max 16 in. o.c. & not to support > roof & ceiling _ 6	02.3.1X1
Max story height of wood-frame 11 ft. 7 in., masonry 13 ft. 7 in.	_ 301.3 ⁸
Max bearing wall stud height 10 ft. between lateral support	

(floor or roof-ceiling assembly perpendicular to plane of wall EXC__T602.3(5) • 2×6 studs supporting roof load with \leq 6 ft. tributary length OK to

18 ft. height or to 20 ft. if studs spaced 12 in. o.c._____ 603.3.1X2 602.3.1

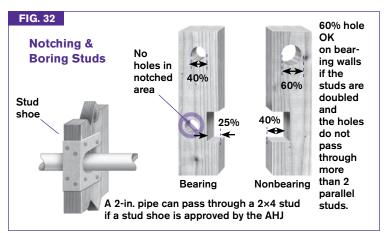
Stud size & spacing per T15_

TABLE 15

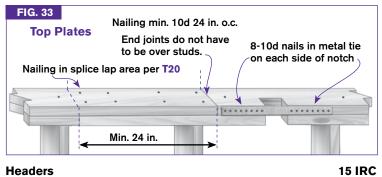
STUD SIZE AND SPACING [602 3(5)]

IABLE 15	SIUD	SIZE ANL	SPACING	[602.3(5)]	ļ	
Bea	ring walls to 10 f	t. laterally u	Insupporte	d height ^A		
Load Supported Stud size & maximum o.c. spaci						
Load St	ipported	2×4	3×4	2×5	2×6	
Roof + ceiling of	or habitable attic	24	24	24	24	
1 f	oor	24	24	24	24	
	of+ceiling or ble attic	16	24	24	24	
2 floors & roof+c at	-	16	-	16		
	No	nbearing wa	lls			
Stuc	size	2×3 ^в	2×4	2×5	2×6	
Max laterally uns	upported height ^A	10	14	16	18	
A. Lateral support refe B. Not allowed in exte	rs to walls or roof/ceiling rior walls	g assemblies				
Top Plates					15 IRC	
Double top p	lates req'd EXC _				602.3.2	
 Single plate 	OK w/ metal ties	at joints per	• T16 & joist	s/rafters		
centered ove	r studs within 1 in.	tolerance_			602.3.2X	
Single top pla	ate connections pe	er T16			_602.3.2X ⁴²	
□ Plates min 2	in nominal thickne	ee & at loae	t sama widt	h ae etude	60232	

Plates min 2 in. nominal thickness & at least same width as studs _____ _ 602.3.2 _____602.3.2 End joints offset min 24 in., need not occur over studs F33


Nailing per T16_

602.3.2 \Box Studs to have full bearing on nominal 2× bottom plates \geq stud width 602.3.4


TABLE 16	SINGLE TOP PLATE SPLICES						
Con dilion	Corners & ir wa	•	Butt joints in straight walls				
Condition	Plate size	Plate size Nails each side		Nails each side			
SDC A-C & D if BWL spacing < 25 ft.	3 in. × 6 in. × 0.036 steel	6 – 8d bo×	3 in. × 12 in. × 0.036 steel	12 – 8d box			
SDC D if BWL spacing ≥ 25 ft.	3 in. × 8 in. × 0.036 steel	9 – 8d bo×	3 in. × 16 in. × 0.036 steel	18 – 8d box			

Notching & Boring of Studs & Plates 12 & 15 IRC □ Notching 25% max in bearing wall, 40% nonbearing F32 602.6#1 □ Bored holes min ⁵/8 in. from face of stud_ 602.6#2 □ OK to exceed above limits with approved stud shoes installed AMI __602.6X Holes not OK in same area as notch 602.6#2 Boring 40% max in bearing wall, 60% nonbearing EXC F32_ 602.6 • 2 successive doubled bearing studs 60% OK F32_ 602.6 \Box Top plate notches or bored holes > 50% of plate width req min 1½ in. strap min 6 in. past notch or hole _ 602.6.1 □ Plate strap min 16 ga., min 8 10d nails each side of notch or hole EXC 602.6.1

• Not reg'd if entire side of wall w/ notch/hole covered with WSP ____ 602.6.1X

TABLE 17	MAXIMUM SIZE STUD NOTCHES & BORED HOLES [602.6]						
	Exterior or Bearing Wall			Nonbearing Walls			
Wall type	2×4	3×4	2×6	2×3	2×4	2×6	
Notches	⁷ /8 in.	⁷ /8 in.	1³/8 in.	1 in.	1 ³ /8 in.	2 ³ /16 in.	
Holes ^A	1 ³ /8 in.	1 ³ /8 in.	2 ³ /16 in.	1 ½ in.	2 ¹ /8 in.	3¼ in.	
A. Holes min ⁵ /₃ in. from edge of stud							

Due to space limitations this book does not have the tables for built-up girders and headers. These can be downloaded from www.codecheck.com/cc/CCBuilding4th.html.

Header spans per download	602.7
Nonbearing walls do not req headers at openings	602.7.4
Single-member headers F34 face nail 12 in. o.c. top & bottom	602.7.1 ⁴³